Correction to: On the preconditioned AOR iterative method for Z-matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improvements of two preconditioned AOR iterative methods for Z-matrices

‎In this paper‎, ‎we propose two preconditioned AOR iterative methods to solve systems of linear equations whose coefficient matrices are Z-matrix‎. ‎These methods can be considered as improvements of two previously presented ones in the literature‎. ‎Finally some numerical experiments are given to show the effectiveness of the proposed preconditioners‎.‎

متن کامل

improvements of two preconditioned aor iterative methods for z-matrices

‎in this paper‎, ‎we propose two preconditioned aor iterative methods to solve systems of linear equations whose coefficient matrices are z-matrix‎. ‎these methods can be considered as improvements of two previously presented ones in the literature‎. ‎finally some numerical experiments are given to show the effectiveness of the proposed preconditioners‎.‎

متن کامل

On the modification of the preconditioned AOR iterative method for linear system

In this paper, we will present a modification of the preconditioned AOR-type method for solving the linear system. A theorem is given to show the convergence rate of modification of the preconditioned AOR methods that can be enlarged than the convergence AOR method.

متن کامل

Preconditioned Mixed-Type Splitting Iterative Method For Z-Matrices

In this paper, we present the preconditioned mixed-type splitting iterative method for solving the linear systems, Ax = b, where A is a Z-matrix. And we give some comparison theorems to show that the convergence rate of the preconditioned mixed-type splitting iterative method is faster than that of the mixed-type splitting iterative method. Finally, we give a numerical example to illustrate our...

متن کامل

Preconditioned Gauss-seidel Iterative Method for Z-matrices Linear Systems

For Ax = b, it has recently been reported that the convergence of the preconditioned Gauss-Seidel iterative method which uses a matrix of the type P = I + S (α) to perform certain elementary row operations on is faster than the basic Gauss-Seidel method. In this paper, we discuss the adaptive Gauss-Seidel iterative method which uses P = I + S (α) + K̄ (β) as a preconditioner. We present some com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational and Applied Mathematics

سال: 2020

ISSN: 2238-3603,1807-0302

DOI: 10.1007/s40314-020-1128-6